Vol. 3 No. 01 (2022)

Review of Water Network Analysis and Validation of SCALER Hydraulic Simulator

Henrique da Silva Pizzo
College of Civil Engineering, Estácio University of Juiz de Fora, Minas Gerais, Brazil/ Department of Hydraulic Measurements, Municipal Water and Sewage Company of Juiz de Fora, Brazil
João Paulo de Carvalho Ignácio
College of Civil Engineering, Estácio University of Juiz de Fora, Minas Gerais, Brazil / Department of Software Development, Inspell Softwares, Juiz de Fora, Brazil
Marcus Vinicius do Nascimento
College of Civil Engineering, Estácio University of Juiz de Fora, Minas Gerais, Brazil

Published 2021-12-25


  • Hydraulic Distribution Networks,
  • Systems Modeling,
  • Water Supply,
  • Software Validation

How to Cite

H. da Silva Pizzo, J. P. de Carvalho Ignácio, and M. V. . do Nascimento, “Review of Water Network Analysis and Validation of SCALER Hydraulic Simulator”, JoCEF, vol. 3, no. 01, pp. 01-11, Dec. 2021.


The article intends to present the validation stage of a software to model and simulate hydraulic networks for water distribution, the SCALER, through its application to a real system, with many branches, with a model previously developed and verified using the EPANET software. SCALER was developed in 2020 and 2021 and, until then, had only been applied to networks with a relatively small number of branches. After discussing topics related to hydraulic modeling of distribution networks, techniques and applications, a brief review of the fundamentals of SCALER is carried out, passing on to its application to the case at hand, which is the Vila Joaniza community, in the municipality of Rio de Janeiro. Data from image, scheme and table are used to assist in the description of the local situation and respective distribution network, with the objective of assessing whether the nodal pressures obtained by SCALER are sufficiently similar to those obtained by EPANET, in order to ensure the proper functioning of the software. After this step, and the calculations have been made by the program, an operation screen, the generated graph of the local situation and a table with the comparison of absolute and percentage deviations between the nodal pressures resulting from the SCALER and those obtained with the EPANET are inserted, confirming that the deviation values are quite small, which validates SCALER as a software also applicable to networks with many branches.


Metrics Loading ...


  1. A. L. Amorim, Conflict resolution mechanism in shared river basins, Ph.D. Thesis. Federal University of Campina Grande, Brazil, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/16863.
  2. Strategic Studies Center of Fundação Oswaldo Cruz, “About 2.2 billion people do not have drinking water in the world, according to UN report,” CeeFiocruz Report. Access on: May 12, 2021 [Cerca de 2,2 bilhões de pessoas não têm água potável no mundo, aponta relatório da ONU]. https://cee.fiocruz.br/?q=agua-potavel-no-mundo.
  3. J. M. Azevedo Netto, M. F. Fernandez, R. Araujo, and A. E. Ito, Hydraulics Manual, 8th ed. São Paulo: Blucher, 2013, pp. 465–476 [Manual de Hidráulica].
  4. R. A. Wurbs, Computer Models for Water Resources Planning and Management, IWR Report 94-NDS-7. Texas A&M University, Texas, USA, 1994.
  5. T. Wagener, D. Savic, D. Butler, R. Ahmadian, Tom Arnot, et al., “Hydroinformatics education – the water informatics in science and engineering (WISE) centre for doctoral training,” Hydrol. Earth Syst. Sci., vol. 25, pp. 2721–2738, 2021. doi: https://doi.org/10.5194/hess-25-2721-2021.
  6. M. T. Tsutiya, Water Supply, 3rd ed. São Paulo: Poli/USP, 2006, pp. 1–8 [Abastecimento de Água].
  7. A. Muhammetoglu, H. Muhammetoglu, A. Adigrita, and Y. Karaaslan, Management of water losses in water supply and distribution networks in Turkey, Turkish J. Water Sci. Manag., vol. 2, no. 1, pp. 5875, 2018. doi: https://doi.org/10.31807/tjwsm.354298.
  8. T. M. Walski, D. V. Chase, D. A. Savic, W. Grayman, S. Beckwith, et al., Advanced Water Distribution Modeling and Management: Operations. Haestad Press, 2004, pp. 297–303; 417–497.
  9. T. M. Walski, “Optimization and pipe sizing decisions,” J. Water Resour. Plan. Manag., vol. 121, no. 4, pp. 340–343, 1995. doi: https://doi.org/10.1061/(ASCE)0733-9496(1995)121:4(340).
  10. S. D. C. Jericó; R. O. Fernandes; and J. F. da Silva, “Hydraulic evaluation of the water supply network in the city of Várzea Alegre - CE,” XX Brazilian symposium on water resources, Bento Gonçalves, Brazil, pp. 1–8, 2013 [Avaliação hidráulica da rede de abastecimento de água da cidade de Várzea Alegre - CE]. https://abrh.s3.sa-east-1.amazonaws.com/Sumarios/155/52104f79908ab9e6732fb26e260b28c8_c8b1a59eb6cce8966f8549ceb2cdd971.pdf
  11. S. H. A. Razaq Zyoud, Hydraulic performance of Palestinian water distribution systems: Jenin water supply network as a case study, M.Sc. Thesis. An-Najah National University, Nablus, Palestine, 2003. http://www.secheresse.info/spip.php?article69442.
  12. A. M. A. Sattar, F. Erturul, B. Gharabaghi, E. A. McBean, and J. Cao, Extreme learning machine model for water network management, Neural. Comput. Appl., 2019 [Nat Comput Applications Forum, 2017]. doi: https://doi.org/10.1007/s00521-017-2987-7.
  13. R. Dziedzic and B. W. Karney, Performance index for water distribution networks under multiple loading conditions, J. Water Resour. Plann. Manage., vol. 142, no. 1, pp. 04015040-104015040-11, 2016. doi: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000564.
  14. P. A. Holanda, J. P. L. Fx, F. C. G. Silva Jr., J. A. Fernandes, and F. A. M. Ponce, Hydraulic modeling of the water distribution network in the district of Vazantes / CE using EPANET software, 49th ASSEMAE national sanitation congress, CuiabBrazil, pp. 97110, 2019 [Modelagem hidrbica da rede de distribuide a do distrito de Vazantes / CE utilizando o software EPANET]. https://tratamentodeagua.com.br/artigo/modelagem-hidraulica-rede-distribuicao-agua-ce/.
  15. M. Tabesh and A. Dolatkhahi, “Effects of pressure dependent analysis on quality performance assessment of water distribution netwoks,” Iran J Sci Technol Trans B Eng, vol. 30, no. B1, pp. 119–128, 2006. https://ijstc.shirazu.ac.ir/article_768.html.
  16. N. J. H. Al-Mansori, T. J. M. Al-Fatlawi, and L. S. A. Al-Zubaidi, “Equilibrium of Babylon water supply network using EPANET program,” Plant Arch., vol. 20, no. 2, 2020 pp. 693–700, 2020. http://www.plantarchives.org/SPL%20ISSUE%2020-2/101__693-700_.pdf.
  17. A. S. H. Al-Mamori and N. Al-Musawi, “Simulation of chlorine decay in Al-Gukook water distribution networks using EPANET,” IJSR, vol. 6, no. 10, pp. 949–955, 2017. https://www.ijsr.net/archive/v6i10/ART20177333.pdf.
  18. M. E. Aydin, S. Aydin, and F. Beduk, “Water loss and control in drinking water networks in Turkey,” Regional workshop on solutions to water challenges in MENA-Region, Cairo, Egypt, 2017. https://www.researchgate.net/publication/343916485.
  19. A. Mamade, D. Loureiro, H. Alegre, and D. Covas, “Top-down and bottom-up approaches for water-energy balance in portuguese supply systems,” Water, vol. 10, no. 5, pp. 1–14, 2018. doi: https://doi.org/10.3390/w10050577.
  20. S. Heydari, J. Mamizadeh, J. Sarvarian, and G. Ahmadi, “Optimization of water distribution networks using developed binary genetic algorithm and hydraulic model software,” J. appl. res. water wastewater, vol. 7, no. 1, pp. 30–35, 2020. doi: https://dx.doi.org/10.22126/arww.2020.5061.1159.
  21. I. Eker, M. J. Grimble, and T. Kara, “Operation and simulation of city of Gaziantep water supply system in Turkey,” Renew. Energy, vol. 28, no. 6, pp. 901–916, 2003. doi: https://doi.org/10.1016/S0960-1481(02)00095-2.
  22. R. Sitzenfrei, Q. Wang, Z. Kapelan, and Dragan Savic, “Using complex network analysis for optimization of water distribution networks,” Water Resour. Res., vol. 56, no. 8, pp. 1–17, 2020. doi: https://doi.org/10.1029/2020WR027929.
  23. M. Tabesh, M. R. Delavar; and A. Delkhah, “Use of geospatial information system based tool for renovation and rehabilitation of water distribution systems,” Int. J. Environ. Sci. Tech., vol. 7, no. 1, pp. 47–58, 2010. doi: https://doi.org/10.1007/BF03326116.
  24. N. R. Kadhim, K. A. Abdulrazzaq, and A. H. Mohammed, “The management of water distribution network using GIS application case study: AL-Karada area,” J. Phys.: Conf. Ser. 1895 012038, 2021. doi:10.1088/1742-6596/1895/1/012038.
  25. S. Aburawe and A. R. Mahmud, “Water loss control and real-time leakage detection using GIS technology,” Geomatics Technologies in the City Symposium, Jeddah, Saudi Arabia, 2011. https://www.researchgate.net/publication/330038831.
  26. A. F. Morosini, F. Costanzo, P. Veltri, and D. Savic, “Identification of measurement points for calibration of water distribution network models,” Procedia Engineering, vol. 89, no. 2014, pp. 693–701, 2014. doi: https://doi.org/10.1016/j.proeng.2014.11.496.
  27. A. H. Al Aboodi, S. A. Abbas, and A. S. Dawood, “Hydraulic network model of water distribution system in Al Hakeem Quarter, Maqil District, Basrah, South of Iraq,” Int. j. sci. eng. res., vol. 5, no. 10, pp. 570–574, 2014. https://www.researchgate.net/publication/283583180.
  28. S. Rathi, “S-PLACE GA for optimal water quality sensor locations in water distribution network for dual purpose: regular monitoring and early contamination detection – a software tool for academia and practitioner,” Water Supply, vol. 21, no. 2, pp. 615–634, 2021. doi: https://doi.org/10.2166/ws.2020.333.
  29. E. Luvizotto Jr. and H. S. Pizzo, “Properties and analysis of searching techniques for calibrating a water distribution network with a model,” Acta Univ Carol, Geol, vol. 46, no. 2/3, pp. 282–285, 2002 [Proceedings 4th International Conf. Calibration and Reliability in Groundwater Modelling, Czech Republic, 2002].
  30. S. Liu, W. Liu, J. Chen, and Q. Wang., “Optimal locations of monitoring stations in water distribution systems under multiple demand patterns: a flaw of demand coverage method and modification,” Front Environ Sci Eng, vol. 6, pp. 204–212, 2012. doi: https://doi.org/10.1007/s11783-011-0364-9.
  31. A. K. Soares, L. F. R. Reis, “Water distribution models calibration using pressure-directed hydraulic simulation model (MSHDP) and hibrid method GA-Simplex,” Rev. Bras. de Recur. Hidr., vol. 9, no.2, pp. 85–96, 2004. doi: http://dx.doi.org/10.21168/rbrh.v9n2.p85-96.
  32. H. S. Pizzo, E. Luvizotto Jr., and R. M. R. da Silva, “Water distribution network models calibration: alternative method (CNM) for identifying monitoring stations,” Int. j. sci. eng. investig., vol. 10, no 111., pp 49–57, 2021. http://www.ijsei.com/papers/ijsei-1011121-07.pdf.
  33. S. Q. Aziz, M. Yassen, M. Qader, and R. Pishtiwan, Water supply system design for Aram Village, Erbil-Iraq, Poster Report. Salahaddin University, Erbil, Iraq, 2018. https://www.researchgate.net/publication/329000190_Water_Supply_System_Design_for_Aram_Village_Erbil-Iraq.
  34. S. Q. Aziz, B. Kareem, D. Fakher, and Z. Kareem, Design of Water Distribution System for Zin City, Erbil-Iraq, Poster Report. Salahaddin University, Erbil, Iraq, 2019. https://www.researchgate.net/publication/332411129_Design_of_Water_Distribution_System_for_Zin_City_Erbil-Iraq.
  35. S. Q. Aziz, B. A. Salih, H. M. Badir, and M. I. Tawfiq, Water distribution system design for New Zanco Village, Erbil-Iraq, Poster Report. Salahaddin University, Erbil, Iraq, 2017. doi: http://dx.doi.org/10.13140/RG.2.2.20803.40487.
  36. J. Lemgruber, L. Musumeci, P. V. L. Lopes, B. M. Mourão, and L. L. Paris, Diagnosis of violence and coexistence in Vila Joaniza, Rio de Janeiro, Center for Safety and Citizenship Studies Report. Rio de Janeiro, Brazil, 2012 [Diagnóstico da violência e da convivência em Vila Joaniza, Rio de Janeiro]. https://cesecseguranca.com.br/textodownload/diagnostico-da-violencia-e-da-convivencia-em-vila-joaniza-rio-de-janeiro/.
  37. D. B. Okumura and L. R. L. Ramírez, Design study of the water supply network for Vila Joaniza / Ilha do Governador, B.Sc. Report. Federal University of Rio de Janeiro, Brazil, 2012 [Estudo de concepcao da rede de abastecimento de agua para a Vila Joaniza / Ilha do Governador]. http://drhima.poli.ufrj.br/images/documentos/tcc/2012/daniel-barbosa-2012.pdf.
  38. Associacao Brasileira de Normas Tecnicas, NBR 12218: Water distribution network project for public supply – Procedure, 2nd ed. Rio de Janeiro: ABNT, 2017, pp. 1–29 [Projeto de rede de distribuicao de agua para abastecimento publico – Procedimento].
  39. Q. Wang, D. A. Savic, and Z. Kapelan, “GALAXY: a new hybrid MOEA for the optimal design of water distribution systems,” Water Resour. Res., vol. 53, no. 3, pp. 1997–2015, 2017. doi: https://doi.org/10.1002/2016WR019854.
  40. M. Shimada, “Time-marching approach for pipe steady flows,” J Hydraul Eng, vol. 114, no. 11, pp. 1301–1320, 1988. doi: https://doi.org/10.1061/(ASCE)0733-9429(1988)114:11(1301).
  41. Luvizotto Jr., E., Computer-aid operational control of water supply systems, Ph.D. Thesis. University of Sao Paulo, Brazil, 1995 [Controle operacional de redes de abastecimento de agua auxiliado por computador]. https://repositorio.usp.br/item/000742270.
  42. R. M. R. Silva, C. B. M. Ribeiro, and H. S. Pizzo, “Flow – integrated hydraulic calculation software for water supply systems,” J. multidiscip. eng. sci. technol., vol. 8, no. 1, pp. 13386–13399, 2021. https://www.jmest.org/wp-content/uploads/JMESTN42353658.pdf.
  43. R. M. R. Silva, C. B. M. Ribeiro, and H. S. Pizzo, “Flow – integrated hydraulic calculation software for water supply systems,” J. multidiscip. eng. sci. technol., vol. 8, no. 1, pp. 13386–13399, 2021. https://www.jmest.org/wp-content/uploads/JMESTN42353658.pdf.
  44. F. A. Diuana and S. C. C. P. Ogawa, Comparative analysis of hydraulic models EPANET, WaterCAD and UFC system for water supply systems - distribution network, B.Sc. Report. Federal University of Rio de Janeiro, Brazil, 2015 [Análise comparativa dos modelos hidráulicos EPANET, WaterCAD e sistema UFC para sistemas de abastecimento de água – rede de distribuição]. https://monografias.poli.ufrj.br/rep-download.php?farquivo=monopoli10013745.pdf&fcodigo=1951.
  45. D. Riccaldone, Comparison of sizing of water distribution networks by computational models, B.Sc. Report. Federal University of Ouro Preto, Brazil, 2016 [Comparação de dimensionamento de redes de distribuição de água por modelos computacionais]. https://www.monografias.ufop.br/handle/35400000/396.
  46. J. P. C. Ignácio, M. V. Nascimento, P. H. G. Oliveira, R. Platz, and H. S. Pizzo, “SCALER - software for sizing water distribution networks,” Brazilian Journal of Development, vol.7, no.7, pp. 71854–71877, 2021 [SCALER - software para dimensionamento de redes de distribuição de água]. doi: https://doi.org/10.34117/bjdv7n7-387.
  47. E. Tourasse, “Explicit equation for coefficient of friction and duct calculation,” Eng. Sanit., vol. 25, no. 2, pp. 177–178, 1986 [Equação explícita para o coeficiente de atrito e cálculo de condutos].