Vol. 4 No. 02 (2023)

Predicting Confinement Effect of Carbon Fiber Reinforced Polymers on Strength of Concrete using Metaheuristics-based Artificial Neural Networks

AFAQ Ahmad
UET Taxila Pakistan

Published 2024-02-05


  • Concrete,
  • Carbon Fiber Reinforced Polymer,
  • Confinement Effect,
  • Strength,
  • Particle Swarm Optimazation,
  • PSO,
  • Grey Wolf Optimizer,
  • Bat Algorithm
  • ...More

How to Cite

S. . Wahab, “Predicting Confinement Effect of Carbon Fiber Reinforced Polymers on Strength of Concrete using Metaheuristics-based Artificial Neural Networks”, JoCEF, vol. 4, no. 02, pp. 45 - 59, Feb. 2024.


This article deals with the study of predicting the confinement effect of carbon fiber reinforced polymers (CFRPs) on concrete cylinder strength using metaheuristics-based artificial neural networks. A detailed database of 708 CFRP confined concrete cylinders is developed from previously published research with information on eight parameters, including geometrical parameters like the diameter (d) and height (h) of a cylinder, unconfined compressive strength of concrete (f_co^'), thickness (nt), the elastic modulus of CFRP (Ef), unconfined concrete strain (?_co), confined concrete strain (?_cc) and the ultimate compressive strength of confined concrete (f_cc^'). Three metaheuristic models are implemented, including particle swarm optimization (PSO), grey wolf optimizer (GWO), and bat algorithm (BA). These algorithms are trained on the data using an objective function of mean square error, and their predicted results are validated against experimental studies and finite element analysis. The study shows that the hybrid PSO model predicted the strength of CFRP-confined concrete cylinders with a maximum accuracy of 99.13% and GWO predicted the results with an accuracy of 98.17%. The high accuracy of axial compressive strength predictions demonstrated that these prediction models are a reliable solution to the empirical methods. The prediction models are especially suitable for avoiding full-scale, time-consuming experimental tests that make the process quick and economical.


Metrics Loading ...


  1. P. Cousin, M. Hassan, P. Vijay, M. Robert, and B. Benmokrane, “Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars,” Journal of Composite Materials, vol. 53, no. 26–27, pp. 3651–3670, Nov. 2019, doi: 10.1177/0021998319844306.
  2. M. Ananthkumar, K. M. Mini, C. Prakash, S. V. Sharma, and A. C. B. Krishnaa, “Study on the efficiency of CFRP and GFRP in corrosion resistance of rebar embedded in concrete,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 872, no. 1, p. 012137, Jun. 2020, doi: 10.1088/1757-899X/872/1/012137.
  3. C. Zhang, D. Zheng, G.-L. Song, Y. Guo, M. Liu, and H. Kia, “Influence of microstructure of carbon fibre reinforced polymer on the metal in contact,” Journal of Materials Research and Technology, vol. 9, no. 1, pp. 560–573, Jan. 2020, doi: 10.1016/j.jmrt.2019.10.085.
  4. M. Usman, M. Yaqub, M. Auzair, W. Khaliq, M. Noman, and A. Afaq, “Restorability of strength and stiffness of fire damaged concrete using various composite confinement techniques,” Construction and Building Materials, vol. 272, p. 121984, 2021.
  5. A. Ahmad, A. Aljuhni, U. Arshid, M. Elchalakani, and F. Abed, “Prediction of columns with GFRP bars through Artificial Neural Network and ABAQUS,” presented at the Structures, Elsevier, 2022, pp. 247–255.
  6. Y. Zhou, Y. Zheng, L. Sui, F. Xing, J. Hu, and P. Li, “Behavior and modeling of FRP-confined ultra-lightweight cement composites under monotonic axial compression,” Composites Part B: Engineering, vol. 162, pp. 289–302, Apr. 2019, doi: 10.1016/j.compositesb.2018.10.087.
  7. L. S. Lee and R. Jain, “The role of FRP composites in a sustainable world,” Clean Techn Environ Policy, vol. 11, no. 3, pp. 247–249, Sep. 2009, doi: 10.1007/s10098-009-0253-0.
  9. H.-J. Lin and C.-I. Liao, “Compressive strength of reinforced concrete column confined by composite material,” Composite Structures, vol. 65, no. 2, pp. 239–250, Aug. 2004, doi: 10.1016/j.compstruct.2003.11.001.
  10. C. Dundar, D. Erturkmen, and S. Tokgoz, “Studies on carbon fiber polymer confined slender plain and steel fiber reinforced concrete columns,” Engineering Structures, vol. 102, pp. 31–39, Nov. 2015, doi: 10.1016/j.engstruct.2015.08.011.
  11. H. Ahmad, M. N. Sheikh, and M. N. S. Hadi, “Experimental Investigation on the Behavior of Hollow-Core Glass Fiber-Reinforced Concrete Columns with GFRP Bars,” Journal of Composites for Construction, vol. 26, no. 2, p. 04021074, Apr. 2022, doi: 10.1061/(ASCE)CC.1943-5614.0001183.
  12. M. N. S. Hadi and T. D. Le, “Behaviour of hollow core square reinforced concrete columns wrapped with CFRP with different fibre orientations,” Construction and Building Materials, vol. 50, pp. 62–73, Jan. 2014, doi: 10.1016/j.conbuildmat.2013.08.080.
  13. Q. Cao, X. Li, J. Zhou, and Z. J. Ma, “Expansive concrete confined by CFRP under eccentric compression,” Construction and Building Materials, vol. 208, pp. 113–124, May 2019, doi: 10.1016/j.conbuildmat.2019.02.127.
  14. J. Liao, K. Y. Yang, J.-J. Zeng, W.-M. Quach, Y.-Y. Ye, and L. Zhang, “Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) in circular columns,” Engineering Structures, vol. 249, p. 113246, Dec. 2021, doi: 10.1016/j.engstruct.2021.113246.
  15. J. Liao, J.-J. Zeng, Q.-M. Gong, W.-M. Quach, W.-Y. Gao, and L. Zhang, “Design-oriented stress-strain model for FRP-confined ultra-high performance concrete (UHPC),” Construction and Building Materials, vol. 318, p. 126200, Feb. 2022, doi: 10.1016/j.conbuildmat.2021.126200.
  16. J. Liao, J.-J. Zeng, C. Jiang, J.-X. Li, and J.-S. Yuan, “Stress-strain behavior and design-oriented model for FRP spiral strip-confined concrete,” Composite Structures, vol. 293, p. 115747, Aug. 2022, doi: 10.1016/j.compstruct.2022.115747.
  17. A. Ahmad, N. D. Lagaros, and D. M. Cotsovos, “Neural Network-Based Prediction: The Case of Reinforced Concrete Members under Simple and Complex Loading,” Applied Sciences, vol. 11, no. 11, Art. no. 11, Jan. 2021, doi: 10.3390/app11114975.
  18. A. Ahmad and D. M. Cotsovos, “Reliability analysis of models for predicting T-beam response at ultimate limit response,” Proceedings of the Institution of Civil Engineers-Structures and Buildings, vol. 176, no. 1, pp. 28–50, 2023.
  19. G. M. Kotsovou, A. Ahmad, D. M. Cotsovos, and N. D. Lagaros, “Reappraisal of methods for calculating flexural capacity of reinforced concrete members,” Proceedings of the Institution of Civil Engineers-Structures and Buildings, vol. 173, no. 4, pp. 279–290, 2020.
  20. A. Ahmad, G. Kotsovou, D. M. Cotsovos, and N. Lagaros, “Assessing the load carrying capacity of RC members through the use of artificial neural networks,” presented at the 11th HSTAM international congress on mechanics, Athens, Greece, 2016.
  21. B. Ba?aran, ?. Kalkan, A. Beycio?lu, and I. Kasprzyk, “A Review on the Physical Parameters Affecting the Bond Behavior of FRP Bars Embedded in Concrete,” Polymers, vol. 14, no. 9, Art. no. 9, Jan. 2022, doi: 10.3390/polym14091796.
  22. M. S. T. Nguyen and S.-E. Kim, “A hybrid machine learning approach in prediction and uncertainty quantification of ultimate compressive strength of RCFST columns,” Construction and Building Materials, vol. 302, p. 124208, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124208.
  23. H. Jahangir and D. Rezazadeh Eidgahee, “A new and robust hybrid artificial bee colony algorithm – ANN model for FRP-concrete bond strength evaluation,” Composite Structures, vol. 257, p. 113160, Feb. 2021, doi: 10.1016/j.compstruct.2020.113160.
  24. J. Jia, Y. Zandi, A. Rahimi, S. Pourkhorshidi, M. A. Khadimallah, and H. E. Ali, “Numerical performance evaluation of debonding strength in fiber reinforced polymer composites using three hybrid intelligent models,” Advances in Engineering Software, vol. 173, p. 103193, Nov. 2022, doi: 10.1016/j.advengsoft.2022.103193.
  25. K. Khan, M. Iqbal, F. E. Jalal, M. Nasir Amin, M. Waqas Alam, and A. Bardhan, “Hybrid ANN models for durability of GFRP rebars in alkaline concrete environment using three swarm-based optimization algorithms,” Construction and Building Materials, vol. 352, p. 128862, Oct. 2022, doi: 10.1016/j.conbuildmat.2022.128862.
  26. T. Kavzoglu and P. M. Mather, “The use of backpropagating artificial neural networks in land cover classification,” International Journal of Remote Sensing, vol. 24, no. 23, pp. 4907–4938, Jan. 2003, doi: 10.1080/0143116031000114851.
  27. B. Keshtegar, A. Gholampour, D.-K. Thai, O. Taylan, and N.-T. Trung, “Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete,” Composite Structures, vol. 262, p. 113644, Apr. 2021, doi: 10.1016/j.compstruct.2021.113644.
  28. F. Yan, Z. Lin, X. Wang, F. Azarmi, and K. Sobolev, “Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm,” Composite Structures, vol. 161, pp. 441–452, Feb. 2017, doi: 10.1016/j.compstruct.2016.11.068.
  29. A. Banaeipour et al., “Effects of Small Deviations in Fiber Orientation on Compressive Characteristics of Plain Concrete Cylinders Confined with FRP Laminates,” Materials, vol. 16, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/ma16010261.
  30. A. Ghasemi and M. Z. Naser, “Tailoring 3D printed concrete through explainable artificial intelligence,” Structures, vol. 56, p. 104850, 2023, doi: https://doi.org/10.1016/j.istruc.2023.07.040.
  31. M. A. Khalil, M. Sadeghiamirshahidi, R. M. Joeckel, F. M. Santos, and A. Riahi, “Mapping a hazardous abandoned gypsum mine using self-potential, electrical resistivity tomography, and Frequency Domain Electromagnetic methods,” Journal of Applied Geophysics, vol. 205, p. 104771, Oct. 2022, doi: 10.1016/j.jappgeo.2022.104771.
  32. Lida Najmi, S. M. Zebarjad, and K. Janghorban, “Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Microscopic Structure of Epoxy Honeycomb Sandwich Panels,” Polym. Sci. Ser. B, vol. 65, no. 2, pp. 220–229, Apr. 2023, doi: 10.1134/S1560090423700872.
  33. A. Mirmiran, M. Shahawy, M. Samaan, H. E. Echary, J. C. Mastrapa, and O. Pico, “Effect of Column Parameters on FRP-Confined Concrete,” Journal of Composites for Construction, vol. 2, no. 4, pp. 175–185, Nov. 1998, doi: 10.1061/(ASCE)1090-0268(1998)2:4(175).
  34. A. Ahmad and A. Raza, “Reliability analysis of strength models for CFRP-confined concrete cylinders,” Composite Structures, vol. 244, p. 112312, 2020.
  35. K. Rodsin, “Confinement effects of glass FRP on circular concrete columns made with crushed fired clay bricks as coarse aggregates,” Case Studies in Construction Materials, vol. 15, p. e00609, Dec. 2021, doi: 10.1016/j.cscm.2021.e00609.
  36. A. de Diego, S. Martínez, V. J. Castro, L. Echevarría, F. J. Barroso, and J. P. Gutiérrez, “Experimental investigation on the compressive behaviour of FRP-confined rectangular concrete columns,” Archiv.Civ.Mech.Eng, vol. 22, no. 3, p. 131, May 2022, doi: 10.1007/s43452-022-00450-4.
  37. J. B. Mander, M. J. N. Priestley, and R. Park, “Theoretical Stress?Strain Model for Confined Concrete,” Journal of Structural Engineering, vol. 114, no. 8, pp. 1804–1826, Aug. 1988, doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804).
  38. J. C. Lim, M. Karakus, and T. Ozbakkaloglu, “Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming,” Computers & Structures, vol. 162, pp. 28–37, 2016.
  39. F. E. Richart, A. Brandtzæg, and R. L. Brown, “Failure of plain and spirally reinforced concrete in compression,” University of Illinois. Engineering Experiment Station. Bulletin; no. 190, 1929.
  40. K. Newman and J. Newman, “Failure theories and design criteria for plain concrete,” Structure, solid mechanics and engineering design, pp. 963–995, 1971.
  41. L. Lam and J. G. Teng, “Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Rectangular Columns,” Journal of Reinforced Plastics and Composites, vol. 22, no. 13, pp. 1149–1186, Sep. 2003, doi: 10.1177/0731684403035429.
  42. J. Teng, T. Jiang, L. Lam, and Y. Luo, “Refinement of a design-oriented stress–strain model for FRP-confined concrete,” Journal of composites for construction, vol. 13, no. 4, pp. 269–278, 2009.
  43. F. Shabbir et al., “Experimental and Numerical Investigation of Construction Defects in Reinforced Concrete Corbels,” Buildings, vol. 13, no. 9, Art. no. 9, Sep. 2023, doi: 10.3390/buildings13092247.
  44. N. Shakouri Mahmoudabadi et al., “Effects of eccentric loading on performance of concrete columns reinforced with glass fiber-reinforced polymer bars,” Sci Rep, vol. 14, no. 1, Art. no. 1, Jan. 2024, doi: 10.1038/s41598-023-47609-4.
  45. I. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, computing, design, and application,” Journal of Microbiological Methods, vol. 43, no. 1, pp. 3–31, Dec. 2000, doi: 10.1016/S0167-7012(00)00201-3.
  46. “Factors Affecting the Performance of Artificial Neural Network Models,” in Soft Computing, vol. 103, in Studies in Computational Intelligence, vol. 103. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 51–85. doi: 10.1007/978-3-540-77481-5_4.
  47. A. R. Ajiboye, R. Abdullah-Arshah, H. Qin, and H. Isah-Kebbe, “EVALUATING THE EFFECT OF DATASET SIZE ON PREDICTIVE MODEL USING SUPERVISED LEARNING TECHNIQUE,” ijsecs, vol. 1, no. 1, pp. 75–84, Feb. 2015, doi: 10.15282/ijsecs.1.2015.6.0006.
  48. T. Linjordet and K. Balog, “Impact of Training Dataset Size on Neural Answer Selection Models,” in Advances in Information Retrieval, L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019, pp. 828–835. doi: 10.1007/978-3-030-15712-8_59.
  49. A. Bailly et al., “Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models,” Computer Methods and Programs in Biomedicine, vol. 213, p. 106504, Jan. 2022, doi: 10.1016/j.cmpb.2021.106504.
  50. S. Gupta and A. Gupta, “Dealing with Noise Problem in Machine Learning Data-sets: A Systematic Review,” Procedia Computer Science, vol. 161, pp. 466–474, Jan. 2019, doi: 10.1016/j.procs.2019.11.146.
  51. M. Shanker, M. Y. Hu, and M. S. Hung, “Effect of data standardization on neural network training,” Omega, vol. 24, no. 4, pp. 385–397, Aug. 1996, doi: 10.1016/0305-0483(96)00010-2.
  52. J. Chu, X. Liu, Z. Zhang, Y. Zhang, and M. He, “A novel method overcomeing overfitting of artificial neural network for accurate prediction: Application on thermophysical property of natural gas,” Case Studies in Thermal Engineering, vol. 28, p. 101406, Dec. 2021, doi: 10.1016/j.csite.2021.101406.
  53. S. Soleimani, S. Rajaei, P. Jiao, A. Sabz, and S. Soheilinia, “New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming,” Measurement, vol. 113, pp. 99–107, Jan. 2018, doi: 10.1016/j.measurement.2017.08.043.
  54. M. Shariati et al., “Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete,” Applied Sciences, vol. 9, no. 24, Art. no. 24, Jan. 2019, doi: 10.3390/app9245534.
  55. B. Sivaneasan, C. Y. Yu, and K. P. Goh, “Solar Forecasting using ANN with Fuzzy Logic Pre-processing,” Energy Procedia, vol. 143, pp. 727–732, Dec. 2017, doi: 10.1016/j.egypro.2017.12.753.
  56. A. Alwosheel, S. van Cranenburgh, and C. G. Chorus, “Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis,” Journal of choice modelling, vol. 28, pp. 167–182, 2018.
  57. M. I. Waris, J. Mir, V. Plevris, and A. Ahmad, “Predicting compressive strength of CRM samples using Image processing and ANN,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 899, no. 1, p. 012014, Jul. 2020, doi: 10.1088/1757-899X/899/1/012014.
  58. A. R. Ghumman et al., “Simulation of pan-evaporation using penman and hamon equations and artificial intelligence techniques,” Water, vol. 13, no. 6, p. 793, 2021.
  59. A. Ahmad, D. M. Cotsovos, and N. D. Lagaros, “Assessing the reliability of RC code predictions through the use of artificial neural networks,” presented at the 1st international conference on structural safety under fire & blast. Glasgow, UK, 2016.
  60. A. Ahmad, M. U. Arshid, T. Mahmood, N. Ahmad, A. Waheed, and S. S. Safdar, “Knowledge-based prediction of load-carrying capacity of RC flat slab through neural network and FEM,” Mathematical Problems in Engineering, vol. 2021, pp. 1–18, 2021.
  61. A. K. Jain and B. Chandrasekaran, “39 Dimensionality and sample size considerations in pattern recognition practice,” Handbook of statistics, vol. 2, pp. 835–855, 1982.
  62. S. J. Raudys and A. K. Jain, “Small sample size effects in statistical pattern recognition: recommendations for practitioners and open problems,” in 10th International Conference on Pattern Recognition [1990] Proceedings, Jun. 1990, pp. 417–423 vol.1. doi: 10.1109/ICPR.1990.118138.
  63. R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm Intell, vol. 1, no. 1, pp. 33–57, Jun. 2007, doi: 10.1007/s11721-007-0002-0.
  64. R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler, maybe better,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 204–210, Jun. 2004, doi: 10.1109/TEVC.2004.826074.
  65. S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007.
  66. X. Yang and A. Hossein Gandomi, “Bat algorithm: a novel approach for global engineering optimization,” Engineering Computations, vol. 29, no. 5, pp. 464–483, Jan. 2012, doi: 10.1108/02644401211235834.
  67. M. S. Khan, F. Jabeen, S. Ghouzali, Z. Rehman, S. Naz, and W. Abdul, “Metaheuristic Algorithms in Optimizing Deep Neural Network Model for Software Effort Estimation,” IEEE Access, vol. PP, pp. 1–1, Apr. 2021, doi: 10.1109/ACCESS.2021.3072380.
  68. V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of feedforward neural networks: A review of two decades of research,” Engineering Applications of Artificial Intelligence, vol. 60, pp. 97–116, Apr. 2017, doi: 10.1016/j.engappai.2017.01.013.
  69. M. K, “Estimation of Strengthening Effects with Crbon Feber Sheet for Concrete Column,” Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, pp. 217–224, 1997.
  70. C. Neumüller, S. Wagner, G. Kronberger, and M. Affenzeller, “Parameter Meta-optimization of Metaheuristic Optimization Algorithms,” in Computer Aided Systems Theory – EUROCAST 2011, R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 367–374. doi: 10.1007/978-3-642-27549-4_47.
  71. N. P. Sahu, D. K. Khande, G. C. Patel, S. Bohidar, and P. Sen, “Study on aramid fibre and comparison with other composite materials,” International Journal for Innovative Research in Science & Technology, vol. 1, no. 7, pp. 303–306, 2014.
  72. S. Fawzia, R. Al-Mahaidi, and X.-L. Zhao, “Experimental and finite element analysis of a double strap joint between steel plates and normal modulus CFRP,” Composite Structures, vol. 75, no. 1, pp. 156–162, Sep. 2006, doi: 10.1016/j.compstruct.2006.04.038.
  73. S. Fawzia, R. Al-Mahaidi, X. L. Zhao, and S. Rizkalla, “Strengthening of circular hollow steel tubular sections using high modulus CFRP sheets,” Construction and Building Materials, vol. 21, no. 4, pp. 839–845, Apr. 2007, doi: 10.1016/j.conbuildmat.2006.06.014.
  74. T. Yu, D. Fernando, J. G. Teng, and X. L. Zhao, “Experimental study on CFRP-to-steel bonded interfaces,” Composites Part B: Engineering, vol. 43, no. 5, pp. 2279–2289, Jul. 2012, doi: 10.1016/j.compositesb.2012.01.024.
  75. M. Mastali and A. Dalvand, “The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces,” Composites Part B: Engineering, vol. 92, pp. 360–376, May 2016, doi: 10.1016/j.compositesb.2016.01.046.
  76. Z. Wu, X. Wang, K. Iwashita, T. Sasaki, and Y. Hamaguchi, “Tensile fatigue behaviour of FRP and hybrid FRP sheets,” Composites Part B: Engineering, vol. 41, no. 5, pp. 396–402, Jul. 2010, doi: 10.1016/j.compositesb.2010.02.001.