Vol. 4 No. 02 (2023)
Articles

Utilization of Agricultural By-Products as a Partial Replacement of Cement in Construction: A Review

Dr.Jaskiran Sobti
Guru Nanak Dev University, Amritsar, India
Amanpreet Kour Bali
Guru Nanak Dev University, Amritsar, India

Published 2024-01-14

Keywords

  • Rice Husk Ash,
  • Rice Straw Ash,
  • Concrete,
  • Pozzolana,
  • Workability,
  • Tensile strength,
  • Compressive strength
  • ...More
    Less

How to Cite

[1]
D. . Sobti and A. K. Bali, “Utilization of Agricultural By-Products as a Partial Replacement of Cement in Construction: A Review”, JoCEF, vol. 4, no. 02, pp. 34 - 44, Jan. 2024.

Abstract

Food and Shelter are the two main requirements for surviving in this cosmos. More than 50% of the geographical area of the country is under cultivation. After harvesting the rice crop there is a common practice to set fields on fire. This stubble burning creates havoc causing a large number of health hazards and also affects the soil properties. This method of decomposition of agricultural residue including rice straw and rice husk if replaced with some standard combustion conditions, temperature, and rapid cooling of ash produced, will prove beneficial to the construction industry. This review paper explores the possibility of utilizing these agricultural waste products i.e. Rice Straw Ash (RSA) and Rice Husk Ash (RHA) as a partial replacement of cement in concrete and analyzing the fresh and hardened properties of concrete. Research gaps and future scope of this study are also highlighted in this review paper. It has been observed that the physical, chemical, and strength properties of concrete are mostly affected by the pozzolan city of the ashes and compressive strength and tensile strength of concrete increases with increase in replacement level of cement with the agricultural ash up-to certain optimal levels. Various other factors that contribute to the enrichment of the existing properties of the resulting concrete include grinding, fineness and porosity of ashes.

Metrics

Metrics Loading ...

References

  1. “Directorate of rice development department of agriculture and farm welfare annual report.” 2022.
  2. “Department of Agriculture and Farmers Welfare Ministry of Agriculture and Farmers Welfare Annual Report.” 2022. [Online]. Available: https://agricoop.nic.in/en/Annual/
  3. N. Jain, A. Bhatia, and H. Pathak, “Emission of Air Pollutants from Crop Residue Burning in India,” Aerosol Air Qual. Res., vol. 14, pp. 422–430, 2014.
  4. “National Policy for Management of Crop Residue - Report 2019.” [Online]. Available: https://agricoop.nic.in/sites/default/files/NPMCR
  5. “Department of agriculture and farmers welfare Ministry of agriculture and farmers welfare –Annual report.” 2022.
  6. S. B. Goswami, R. Mondal, and S. K. Mandi, “Archives of Agronomy and Soil Science,” 2019.
  7. K. G. Mandal, A. K. Misra, K. M. Hati, K. K. Bandyopadhyay, P. K. Ghosh, and M. Mohanty, “Rice residue-management options and effects on soil properties and crop productivity,” J. Food Agric. Environ., pp. 224–231, 2004.
  8. N. Jain, V. K. Sehgal, S. Singh, and N. Kaushik, “Estimation of surplus crop residues in India for bio-fuel production,” Joint report of TIFAC and IARI, New Delhi, 2018.
  9. W. Khan, K. Shehzada, T. Bibi, S. U. Islam, and S. W. Khan, “Performance Evaluation of Khyber Pakhtunkhwa Rice Husk Ash (RHA) in Improving Mechanical Behavior of Cement,” Constr. Build. Mater., pp. 89–102, 2018, doi: 10.1016/j.conbuildmat.2018.04.213.
  10. Q. Yuan, J. Pump, and R. Conrad, “Straw Application in Paddy Soil Enhances Methane Production Also from Other Carbon Sources,” Biogeosciences, vol. 11, pp. 237–246, 2014, doi: 10.5194/bg-11-237-2014.
  11. S. Mittal, N. Singh, R. Agarwal, A. Awasthi, and P. K. Gupta, “Ambient Air Quality During Wheat and Rice Crop Burning Episodes in Patiala,” Atmos. Environ., vol. 43, pp. 238–244, 2009, doi: 10.1016/j.atmosenv.2008.09.068.
  12. A. Junpen, J. Pansuk, O. K. Penwandeaphongphan, and S. Garivait, “Multidisciplinary Digital Publishing Institute (MDPI),” 2018, doi: 10.3390/atmos9110449.
  13. N. Baghel, K. Singh, A. Lakhani, K. M. Kumari, and A. Satsangi, “A Study of Real-Time and Satellite Data of Atmospheric Pollutants during Agricultural Crop Residue Burning at a Downwind Site in the Indo-Gangetic Plain,” MDPI Artic., 2023, doi: 10.3390/pollutants3010013.
  14. S. A. Miller, A. Horvath, and P. J. M. Monterio, “Impacts of booming concrete production on water resources worldwide,” Nat. Sustain., pp. 69–76, 2018, doi: 10.1038/s41893-017-0009-5.
  15. S. K. Antiohos, J. G. Tapali, M. Zervaki, J. Sousa-Coutinho, S. Tsimas, and V. G. Papadakis, “Low Embodied Energy Cement Containing Untreated RHA: A Strength Development and Durability Study,” Constr. Build. Mater., vol. 49, pp. 455–463, 2013, doi: 10.1016/j.conbuildmat.2013.08.046.
  16. E. Aprianti, P. Shafigh, S. Bahri, and J. Nodeh, “Supplementary cementitious materials origin from agricultural waste: A review,” Constr. Build. Mater., pp. 176–187, 2015, doi: 10.1016/j.conbuildmat.2014.10.010.
  17. B. Uzal, L. Turanli, and P. K. Mehta, “High-Volume Natural Pozzolan Concrete for Structural Applications,” ACI Mater. J., pp. 535–538, 2007.
  18. J. Shah, “Indian Cement Manufacturers & Their Efforts Towards Sustainability,” 2022.
  19. I. E. Agency, “IEA report,” 2022.
  20. “International Energy Agency Report.” [Online]. Available: https://www.iea.org/reports/cement
  21. S. Rukzon, P. Chindaprasirt, and R. Mahachai, “Effect of Grinding on Chemical and Physical Properties of Rice Husk Ash,” Int. J. Miner. Metall. Mater., vol. 16, p. 242, 2009, doi: 10.1016/S1674-4799(09)60041-8.
  22. M. Safiuddin, J. S. West, and K. A. Soudki, “Properties of freshly mixed self-consolidating concretes incorporating rice husk as a supplementary cementing material,” Constr. Build. Mater., pp. 833–842, 2012, doi: 10.1016/j.conbuildmat.2011.12.066.
  23. J. Rosello, L. Soriano, M. P. Santamarina, J. L. Akasaki, J. Monzo, and J. Paya, “Rice straw ash: A potential pozzolanic supplementary material for cementing systems,” Ind. Crops Prod., vol. 103, pp. 39–50, 2017, doi: 10.1016/j.indcrop.2017.03.030.
  24. A. Pandey and B. Kumar, “Effects of rice straw ash and micro silica on mechanical properties of pavement quality concrete,” J. Build. Eng., vol. 26, p. 100889, 2019, doi: 10.1016/j.jobe.2019.100889.
  25. S. Munshi, G. Dey, and R. P. Sharma, “Use of Rice Straw Ash as Pozzolanic Material in Cement Mortar,” Int. J. Eng. Technol., 2013, doi: 10.7763/IJET.2013.V5.626.
  26. D. S. Aulakh, J. Singh, and S. Kumar, “The Effect of Utilizing Rice Husk Ash on Some Properties of Concrete – A Review,” Curr. World Environ., pp. 224–231, 2018.
  27. M. Amin, B. A. Tayeh, M. A. Kandil, I. S. Agwa, and M. F. Abdelmagied, “Effect of rice straw ash and palm leaf ash on the properties of ultra-high-performance concrete,” Case Stud. Constr. Mater., 2022, doi: 10.1016/j.cscm.2022.e01266.
  28. M. A. El-Sayed and T. M. El-Samni, “Physical and chemical properties of rice straw ash and its effect on the cement paste produced from different cement types,” J King Saud Univ Sci, vol. 21, no. 3, pp. 21–30, 2006.
  29. A. Ajwad, S. Ahmad, Abdullah, S. T. A. Jaffar, U. lyas, and M. A. Adnan, “Effect of using rice husk ash as a partial replacement of cement on properties of fresh and hardened concrete,” 2022, doi: 10.2478/acee-2022-0017.
  30. A. Pandey and B. Kumar, “Analysis of rice straw ash for part replacement of OPC in pavement quality concrete,” Int. J. Adv. Mech. Civ. Eng., 2016.
  31. R. Khan, A. Jabbar, I. Ahmad, W. Khan, A. N. Khan, and J. Mirza, “Reduction in Environmental Problems Using Rice-Husk Ash in Concrete,” Constr. Build. Mater., vol. 36, pp. 360–366, 2012, doi: 10.1016/j.conbuildmat.2011.11.028.
  32. K. Ganesan, K. Rajagopal, and K. Thangavel, “Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete,” Constr. Build. Mater., pp. 1675–1683, 2008, doi: 10.1016/j.conbuildmat.2007.06.011.
  33. S. Arivalagan, “Experimental Study on Structural Properties of Concrete by Partial Replacement of Cement by Rice Husk Ash,” Int. J. Chem. Technol. Res., vol. 1, p. 7, 2022, doi: 10.20902/IJCTR.2022.150201.
  34. A. K. Bali and H. Singh, “Feasibility study of using rice straw as a construction material in concrete,” Int. J. Eng. Res. Mech. Civ. Eng., 2021.
  35. A. A. Raheem and M. A. Kareem, “Chemical Composition and Physical Characteristics of Rice Husk Ash Blended Cement,” Int. J. Eng. Res. Afr., pp. 25–35, 2017, doi: 10.4028/www.scientific.net/JERA.32.25.
  36. C. Oliko, C. K. Kabubo, and J. N. Mwero, “Rice Straw and Eggshell Ash as Partial Replacements of Cement in Concrete,” Eng. Technol. Appl. Sci. Res., pp. 6481–6487, 2020, doi: 10.48084/etasr.3893.
  37. V. P. Della, I. Kuhn, and D. Hotza, “Rice Husk Ash as an Alternate Source for Active Silica Production,” Mater. Lett., vol. 49, pp. 818–821, 2001, doi: 10.1016/S0167-577X(02)00879-0.
  38. S. Munshi and R. Sharma, “Experimental investigation on strength and water permeability of mortar incorporated with Rice Straw Ash,” Adv. Mater. Sci. Technol., pp. 1–7, 2016, doi: 10.1155/2016/9696505.
  39. A. Joshaghani and M. A. Moeini, “Evaluating the Effects of Sugarcane-Bagasse Ash and Rice-Husk Ash on the Mechanical and Durability Properties of Mortar,” J. Mater. Civ. Eng., 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002317.
  40. T. A. El-Sayed, A. M. Erfan, and R. M. A. El-Naby, “Recycled Rice and Wheat Straw Ash as Cement Replacement Materials,” J. Eng. Res. Rep., 2019.
  41. E. Ozturk, C. Ince, S. Derogar, and R. Ball, “Factors Affecting CO2 emissions, cost efficiency and eco–strength efficiency of concrete containing rice husk ash: A database study,” Constr. Build. Mater., 2022, doi: 10.1016/j.conbuildmat.2022.12690.
  42. F. Muleya, N. Muwila, C. K. Tembo, and A. Lungu, “Partial replacement of cement with rice husk ash in concrete production: An exploratory Cost Benefit Analysis for low income communities,” Int. Soc. Manuf. Serv. Manag. Eng., pp. 127–141, 2021.
  43. O. K. Adisa, “Economy of Rice Husk Ash (RHA) in Concrete for Low-cost Housing Delivery in Nigeria,” J. Civ. Eng. Archit., vol. 7, pp. 1464–1470, 2013.
  44. S. A. Memon, U. Javed, M. I. Shah, and A. Hanif, “Use of Processed Sugarcane Bagasse Ash in Concrete as Partial Replacement of Cement: Mechanical and Durability Properties,” Multidiscip. Digit. Publ. Inst., 2022.
  45. N. K. Amudhavalli and J. Mathew, “Effect of Silica Fume on Strength and Durability Parameters of Concrete,” Int. J. Eng. Sci. Technol., vol. 3, pp. 28–35, 2012.
  46. G. M. S. Islam, M.H .Rahman, and N. Kazi, “Waste glass powder as partial replacement of cement for sustainable concrete practice,” Int. J. Sustain. Built Environ., vol. 6, pp. 37–44, 2017.
  47. H. Bhaskaran, L. John, Neethu .P.M, and T. Sebastian, “Study on egg shell concrete,” Int. J. Eng. Res. Technol., 2016.
  48. B. S. Divsholi, T. Y. D. Lim, and S. Teng, “Durability properties and microstructure of ground granulated blast furnace slag cement concrete,” Int. J. Concr. Struct. Mater., vol. 8, pp. 157–164, 2014.