Seismic Resilience in Kota Kinabalu: Ground Response and Liquefaction Risk Assessment for Existing Buildings
Published 2025-01-01
Keywords
- Soil flexibility,
- Kota Kinabalu Sabah,
- Seismic Design Response Spectra,
- Soil Liquefaction Assessment
How to Cite
Copyright (c) 2024
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Seismic considerations have become increasingly critical in Malaysian structural design due to heightened awareness following notable earthquakes, such as the Ranau earthquake, which recorded a peak ground acceleration (PGA) of 0.15g. This has led to the adoption of the Malaysia National Annex to Eurocode 8 (MS EN 1998-1:2015), providing guidelines for earthquake-resistant design since 2017. This study focuses on: (1) establishing earthquake design response spectra for Kota Kinabalu. (2) Assessing soil liquefaction susceptibility. (3) Investigating potential ground settlement due to liquefaction. The ground response analysis methodology involves: (i) obtaining ground motion data. (ii) Analyzing dynamic soil characteristics from boreholes. (iii) Conducting 1-D shear wave propagation analysis using DEEPSOIL software. (iv) Developing site-specific response spectra. For liquefaction assessment, the process includes acquiring borehole logs, evaluating liquefaction risk, and estimating settlement using LiquefyPro software. The study projects a seismic response spectrum for Sabah with a PGA of 0.16g, reflecting regional seismic hazards. An amplification factor between 3 and 5 is expected based on site-specific conditions. Liquefaction risk is concluded to be minimal, as borehole data and historical evidence indicate low susceptibility in Sabah. These findings provide valuable insights for improving seismic resilience in the region and contribute to the development of safer infrastructure designs aligned with Malaysian standards.
Metrics
References
- R. Jena and B. Pradhan, “Estimating seismic hazard using GIS for the state of Sabah, Malaysia,” Proc. - 39th Asian Conf. Remote Sens. Remote Sens. Enabling Prosper. ACRS 2018, vol. 1, no. February 2019, pp. 97–104, 2018.
- F. Tongkul, “Active tectonics in Sabah – seismicity and active faults,” vol. 64, no. December, pp. 27–36, 2017.
- R. Ahmadi, M. H. A. M. Suhaili, I. A. Najar, M. A. Ladi, N. A. Bakie, and A. F. Abdullahi, “Evaluation on the Soil Flexibility of the Largest HEP Dam Area in East Malaysia using 1-D Equivalent Linear Analysis,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 4, pp. 1535–1542, 2021, doi: 10.18517/ijaseit.11.4.12281.
- Y. Wang et al., “The 2015 M w 6 . 0 Mt . Kinabalu earthquake?: an infrequent fault rupture within the Crocker fault system of East Malaysia,” Geosci. Lett., 2017, doi: 10.1186/s40562-017-0072-9.
- R. Ahmadi, I. A. Najar, A. F. Abdullahi, and T. Galin, “Response spectra for moderate seismic area - application to Miri district of Sarawak, Malaysia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1101, no. 1, p. 012020, 2021, doi: 10.1088/1757-899x/1101/1/012020.
- I. A. Najar, R. B. Ahmadi, H. Hamza, N. B. M. Sa’don, and A. Ahmad, “First Order Seismic Microzonation of Miri district of Sarawak Malaysia using AHP-GIS Platform,” Test Eng. Manag., vol. 83, no. 2, pp. 13918–13928, 2020.
- R. Ahmadi, I. A. Najar, A. F. Abdullahi, M. Norazzlina, H. Hamza, and N. A. Najar, “Computational Investigation of Soil Liquefaction Susceptibility based on Standard Penetration Test Value of Miri District ( Sarawak , Malaysia ),” Int. J. Adv. Sci. Technol., vol. 29, no. 7, pp. 2735–2748, 2020.
- I. A. Najar, R. Ahmadi, Y. K. A. Khalik, N. Z. Mohamad, M. A. H. Jamian, and N. A. Najar, “A Framework of Systematic Land Use Vulnerability Modeling Based on Seismic Microzonation: A Case Study of Miri District of Sarawak, Malaysia,” Int. J. Des. Nat. Ecodynamics, vol. 17, no. 5, pp. 669–677, 2022, doi: 10.18280/ijdne.170504.
- S. A. Y. B. W. A. Aziz and I. A. Najar, “Seismic Capacity Using Finite Element Analysis: A Case Study of Murum Powerhouse,” Acadlore Trans. Geosci., vol. 2, no. 2, pp. 70–79, 2023, doi: 10.56578/atg020202.
- I. A. Najar, R. B. Ahmadi, M. A. H. Jamian, H. B. Hamza, A. Ahmad, and C. H. Sin, “Site-Specific Ground Response Analysis using the Geotechnical Dataset in Moderate Seismicity Region,” Int. J. Mech., vol. 16, pp. 37–45, 2022, doi: 10.46300/9104.2022.16.5.
- A. B. Nabilah and T. Balendra, “Seismic hazard analysis for Kuala Lumpur, Malaysia,” J. Earthq. Eng., vol. 16, no. 7, pp. 1076–1094, 2012, doi: 10.1080/13632469.2012.685208.
- R. Mourad, J. Bin Wahid, O. A. A. Alkubise, and I. A. Najar, “Investigation of the Sustainability Potentials in the Ten House Project Bangkok-Thailand,” Int. J. Sustain. Dev. Plan., vol. 18, no. 3, pp. 729–735, 2023, doi: 10.18280/ijsdp.180308.
- I. A. Najar, R. Ahmadi, Y. K. A. Khalik, S. N. L. Taib, N. B. M. Sutan, and N. H. Bin Ramli, “Soil Suffusion under the Dual Threat of Rainfall and Seismic Vibration,” Int. J. Des. Nat. Ecodynamics, vol. 18, no. 4, pp. 849–860, 2023, doi: 10.18280/ijdne.180411.
- I. A. Najar, R. B. Ahmadi, N. A. Najar, S. Akbar, and N. S. B. Hanapi, “Review of Impact of 2004 Great Sumatra-Andaman Mega Thrust Earthquake and Tsunami on A ff ected Countries using ECLAC DaLA Framework,” J. Environ. Eng. Stud., vol. 5, no. 1, pp. 36–45, 2020.
- R. Ahmadi, A. Ahmad, A. F. Abdullahi, I. A. Najar, M. Haniz, and A. Muhamad, “A Framework on Site-Specific Probabilistic Seismic Hazard Assessment of Tabung Haji Hotel and Convention Centre in Kuching, Sarawak, Malaysia,” in 4th World Congress on Disaster Management - IIT Bombay, 2019, pp. 1–10.
- I. A Najar and R. Ahmadi, “Editorial Scope: Geotechnical Earthquake Engineering Edition,” J. Civ. Eng. Sci. Technol., vol. 14, no. 2, pp. 78–82, 2023, doi: 10.33736/jcest.6006.2023.
- A. I. Ben, S. K., Ahmadi, R. Bustami, A. R., Najar, “Numerical Investigation of Seismic Hazard and Risk of Murum Hydro- Electric Dam ( MHEP ),” in Proceedings of the 2nd International Conference on Dam Safety Management and Engineering, 2023, pp. 855–869.
- R. Ahmadi, H. Azahari, M. Suhaili, and A. Najar, “Evaluation on the Soil Flexibility of the Largest HEP Dam Area in East Malaysia using 1-D Equivalent Linear Analysis,” no. Feb 2021, 2021.
- H. Hashim, M. Suhatril, and R. Hashim, “Assessment of liquefaction hazard along shoreline areas of Peninsular Malaysia,” Geomatics, Nat. Hazards Risk, vol. 8, no. 2, pp. 1853–1868, 2017, doi: 10.1080/19475705.2017.1391882.
- V. Jainih and N. S. H. Harith, “Seismic vulnerability assessment in Kota Kinabalu, Sabah,” IOP Conf. Ser. Earth Environ. Sci., vol. 476, no. 1, 2020, doi: 10.1088/1755-1315/476/1/012053.
- S. Yasuda, I. Towhata, I. Ishii, S. Sato, and T. Uchimura, “Liquefaction-Induced Damage To Structures During the 2011 Great East Japan Earthquake,” J. JSCE, vol. 1, no. 1, pp. 181–193, 2013, doi: 10.2208/journalofjsce.1.1_181.
- J. F. Bird and J. J. Bommer, “Evaluating earthquake losses due to ground failure and identifying their relative contribution,” 13th World Conf. Earthq. Eng., no. 3156, 2004.
- J. Kaklamanos, L. G. Baise, E. M. Thompson, and L. Dorfmann, “Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites,” Soil Dyn. Earthq. Eng., vol. 69, pp. 207–219, 2015, doi: 10.1016/j.soildyn.2014.10.016.
- B. Golutin, “Distribution of ground motion seismic surface wave of the 2015 shallow strong earthquake at Ranau central zone seismically active region, Sabah, Malaysia,” Bull. Geol. Soc. Malaysia, vol. 69, no. May, pp. 67–77, 2020, doi: 10.7186/bgsm69202006.
- T. K. Imai T, Correlation of N-value with S-wave velocity and shear modulus. In: Proceedings of the 2nd European Symposium of Penetration Testing. 1982.
- A. Kumar, S. S., Krishna, A. M., & Dey, Dynamic properties and liquefaction behaviour of cohesive soil in northeast India under staged cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 10(5).
- Y. M. A. Hashash, “Deepsoil 6.0, User Manual,” 2016.
- Y. M. A. Hashash, “Deepsoil 7.0, User Manual,” pp. 1–170, 2020.
- F. E. Latifi, K. Baba, L. Bahi, S. Touijrate, and C. Cherradi, “Semi-empirical method for evaluating risk of liquefaction during earthquakes a study case of rhiss dam,” E3S Web Conf., vol. 150, no. 20 20, pp. 7–12, 2020, doi: 10.1051/e3sconf/202015001004.
- Youd BIdriss IAndrus RArango ICastro GChristian JDobry RFinn WJr LHynes MIshihara KKoester JLiao SIii WMartin GMitchell JMoriwaki YPower MRobertson PSeed RIi K, “L Iquefaction R Esistance of S Oils?: S Ummary R Eport From the,” Manager, vol. 126, no. April, pp. 297–313, 2001.
- T. Iwasaki, K. Tokida, and F. Tatsuoka, “Soil Liquefaction Potential Evaluation with Use of the Simplified Procedure,” First Int. Conf. Recent Adv. Geotech. Earthq. Eng. Soil Dyn., pp. 209–214, 1981.